

BALES ENERGY ASSOCIATES

Date: October 31, 2014 (Revised 12/5/14)

ENERGY STUDY for the

Energy Analysis of Measures Through the Massachusetts Clean Energy Center Green Communities Program

Completed By:

Bales Energy Associates 50 Miles Street Greenfield, MA 01301 bart.bales@balesenergy.com 413-863-5020

Table of Contents

Introduction	3
Executive Summary	3
Energy Conservation Opportunities Evaluated	3
Executive Summary Chart	4
Existing Conditions	4
Facility Description	4
Utility Energy Use	4
Building Enclosure	4
Heating, Ventilating & Air Conditioning Systems	5
Heating System	5
Cooling System	6
Temperature & Ventilating Control System	6
HVAC Distribution System	6
Domestic Hot Water (DHW) System	7
APPENDICES	8
UTILITY INFORMATION	9
HEAT BALANCE INFORMATION 1	0
HEATING SYSTEM CONTROL MEASURE 1	2
GREENHOUSE GAS INFORMATION 1	3

Introduction

Bales Energy Associates (BEA), an energy efficiency engineering firm, was contracted to provide an energy study for selected town-owned buildings in Ashby, Massachusetts. The study was funded through grant funds provided by Green Communities Program of the Massachusetts Clean Energy Center. The building evaluated in this report is the Fire Station.

Bart Bales, PE, MSME, senior engineer at BEA, visited the site, reviewed energy usage & billing information, examined relevant equipment and systems, and developed energy analyses and recommendations with regard to each building's energy related systems.

Given the nature of the funding process for the Green Communities Program, a preliminary site visit identified specific measures for inclusion in the current report. Other potential measures indentified in the course of this study have been noted and may be considered for evaluation for future Green Communities grant applications.

Note: Through the course of this study, BEA has evaluated specific system improvement opportunities including building enclosure, HVAC, controls, domestic hot water and other mechanical and electrical systems. This analysis was completed to a level sufficient for recommending and calculating potential energy and dollar savings and for estimating costs for recommended energy system improvements to aid the client in making an informed decision on implementation of the recommendations provided.

Disclaimer: An added design phase for development of final design documents for construction implementation is assumed and recommended to follow this report. This study may be used as a starting point with supporting information for development of final system design and specification documents. Verification of all field measurements and recalculation of all heat load and final system sizing calculations are the responsibility of the final designer of record. Design implementation may be accomplished by any of the following methods: plan-specification-bid process or performance specification-design-build process.

Executive Summary

Energy Conservation Opportunities Evaluated

During the proposal and contracting process, specific energy conservation measures needing evaluation were identified at each facility. ASHRAE Level II calculations were completed for all measures evaluated.

BEA has approached the Ashby Fire Department building using a "whole systems thinking" approach. Improvements in various systems have interactive impacts with other systems. Key conclusions are the following:

1. Controls Systems Recommendation

• Install microprocessor-based programmable thermostats to provide temperature setback for areas. Equip with wifi capability to allow systems to be scheduled locally and remotely using "smart' phones and tablet and laptop computers.

The costs, savings, and economic payback for these energy conservation measures are presented in the following Executive Summary Chart. The values shown in the Executive Summary Table represent the savings with measures taken in the order of economic feasibility shown.

The calculations supporting each measure are included in the appendices.

Executive Summary Chart

	Natural Gas	Waste Oil	Oil	Electricity	[Execu	tive Summa	ry Chart]				
	per therm	per gal	\$3.47 per gal	\$0.21 per kWh			Gree	n Communities P	rogram]				
	Mea	sure Descrip	tion		Fuel Energy	Annual		Full (Cost			Incremental	Cost Differen	ce *
Measure	(RTM = Ren	ewable Therma	l Measure)	Available	Savings	Savings			After I	ncentive			Afte	r Incentive
#	(ECM = Ener	rgy Conservatio	on Measure)	Incentive (\$)	(% of base)	(\$/yr)	Cost (\$)	Payback (yrs)	Cost (\$)	Payback (yrs)	Cost (\$	Payback (yrs)	Cost (\$)	Payback (yrs)
ECM 1	II the Court	Cartal		¢	20/	¢ 125	¢ 1.00	14.0	¢ 1.0(2	14.0	¢ 10	(2) 14.0	¢ 1.972	14.0
ECM I	Heating Syst	em Controis		ş -	3%	\$ 125	\$ 1,863	-	\$ 1,863		. ,	63 14.9	\$ 1,863	
			Totals:	\$-	\$0	\$ 125	\$ 1,863	3 14.9	\$ 1,863	14.9	\$ 1,8	63 14.9	\$ 1,863	14.9

			Fuel Energ	gy Impact				
		Natural Gas	Oil	Waste Oil	Electricity			
		100.0	138.7	125.0	3.413			
		kBtu / therm	kBtu / gal	kBtu / gal	kBtu / kWh			
	Baseline Energy Use	Natural Gas	Oil	Waste Oil	Electricity	Fuel Energy		
	8.	Ivaturar Gas	÷		Electricity			
	Space Heating		1,240	947		290,387		
	Measure Description		Fuel Usage Af	ter Measures		Fuel Energy	Fuel Energy	Savings
Measure	Measure Description (RTM = Renewable Thermal Measure)	Natural Gas	Fuel Usage Af Oil	ter Measures Waste Oil	Electricity	Fuel Energy Use	Fuel Energy Savings	Savings As % of
Measure #	1		8	1	Electricity (kWh/yr)	00	0.	0
	(RTM = Renewable Thermal Measure)	Natural Gas	Oil	Waste Oil	ĩ	Use	Savings	As % of
#	(RTM = Renewable Thermal Measure)	Natural Gas	Oil	Waste Oil	ĩ	Use	Savings	As % of
#	(RTM = Renewable Thermal Measure) (ECM = Energy Conservation Measure)	Natural Gas	Oil (gal / yr)	Waste Oil (gal/yr)	ĩ	Use (kBtu / yr)	Savings (kBtu / yr)	As % of Baseline

Existing Conditions

Facility Description

Built in 1970, the Ashby Fire Station is a 4,288 ft^2 , single story facility primarily utilized for garage storage of the department's various fleet assets. In addition to the garage space there are four additional rooms partitioned off that include the office & meeting space, a lavatory, mechanical room, and storage room. A small garage addition off the back left of the building was necessary to accommodate the additional length of a new ladder truck.

Utility Energy Use

Utility data for a multi-year period was collected. Data for the reference year used, May 2013 - April 2014, is tabulated and reported in the appendices. The electrical usage was 19,161 kWh, the #2 fuel oil consumption was 1,240 gallons, and the estimate for waste oil use was calculated to be 947 gallons for that time period. These utility/fuel values add up to annual totals of 355,764 kBtu and 83 kBtu/ft².

Building Enclosure

The fire station is a single-story, masonry building built on a concrete slab. The nearly flat roof, pitched very slightly to the rear center to aid in drainage/runoff control, is constructed of a rubber membrane surface with a

Fesco[®] board underlayment laid over roughly 2 1/2" of rigid insulation board that lies on top of a corrugated metal roof deck supported by widely spaced steel truss members. The exterior walls, and interior partition walls, are constructed of concrete masonry block. At some point a longer ladder truck was purchased and the department had to break through the back wall of the left-hand garage bay and construct a bump out garage to allow for storage of that truck. This section has a small shed roof, and is wood framed, both walls and ceiling, has an unfinished interior surface and is insulated with kraft-faced fiberglass batt insulation. The structure is supported by a standard concrete slab at grade level which is assumed to be un-insulated for this evaluation.

Below is a picture taken from the east corner of the building showing the rear of the station including the extended garage bump out addition and the detached waste oil shed.

Heating, Ventilating & Air Conditioning Systems

Heating System

The space heating is served by two Viessmann Vitorond 200 (model: VR2-40) oil-fired (#2 fuel oil) boilers located in the mechanical room and a ceiling suspended Clean Burn furnace that hangs in the garage area fired by waste oil. The two boilers have a rated output of 140 MBH each and are higher efficiency at 87%, relative to standard oil-fired, atmospheric boilers. The furnace's output is approximately 235 MBH at around 84% efficiency.

The design heat load for the existing building is approximately 235,000 Btu/hr.

It was noted that the outdoor intake grill in the exterior door of the boiler room had been sealed, presumably due to cold conditions in the boiler room. Best practice is to provide combustion air to the boilers from the outside. The consultant recommends installation of dedicated intake piping to deliver air directly to the boilers.

Cooling System

The department utilizes a removable window air conditioning unit for the meeting room space when necessary.

Temperature & Ventilating Control System

The existing thermostat controls consist of manual, round Honeywell thermostats for both heating systems. There are two zones, one is the garage bay areas and the second is the auxiliary rooms. The garage bays have two thermostats to control that area. One controls the waste oil furnace and the other controls the oil boilers. There is a third thermostat in the office/meeting room that controls that zone off the oil boilers.

Recommendation: <u>Utilize a programmable thermostat to control temperatures and allow for automatic</u> <u>setback of unused areas during unoccupied hours</u>. To allow for more effective scheduled temperature setback and building warm-up, Bales Energy recommends a programmable thermostat with wifi capability to allow activation of unscheduled building warm-up remotely using "smart" phones and tablet and laptop computers.

System costs and energy and dollar savings are reported in the appendices of this report.

HVAC Distribution System

The two heating systems have separate distribution systems associated with each one.

The oil boilers in the mechanical room have two circulators that deliver heated water through an uninsulated piping system to serve ceiling-suspended, Modine unit heaters in the garage areas and fin-tube convectors in the garage and meeting rooms.

The waste oil furnace has a duct on the discharge side of the unit. The unit's delivery system consists of a short supply plenum with supply grills on two sides which blow heated air into the garage space. A second supply trunk on the back of the plenum delivers heated air to the meeting room and the waste oil shed. The existing grill diffusers in the supply plenum serving the garage are approximately 65% covered with cardboard to direct more of the volume toward the supply trunk and ultimately the auxiliary spaces. Auxiliary spaces receiving heat from the furnace only do so when the thermostat in the garage calls for heat.

Below photo showing the ducted supply system of the waste oil furnace.

Domestic Hot Water (DHW) System

Domestic hot water is provided by a dual-element electric water heater. It was noted on the walkthrough that the copper DHW piping in the facility is not insulated and presents an opportunity for small savings, though no calculations nor specific ECM addresses this.

APPENDICES

UTILITY INFORMATION

May 2013 - Apr 2	2014	В	illed Ene	rgy Use ˈ	Table fo	or Electri	city & F	uel	
Building Name	Fire Station								
Owner	Town of Ash	hv							
	TOWN OF AG								
	Electricity	Demand	Delivery	Supplier	Electricity	Waste Oil	Oil	Oil	Energy
Month	KWH	KW	Charged \$	Charged \$	Total \$	Gallons	Gallons	\$	Totals
								•	
May 2013	1,624	11.5	\$247	\$104	\$351		136.6	\$401	\$752
Jun	1,088	7.0	\$15	\$77	\$92				\$92
Jul	1,111	9.5	\$183	\$84	\$267				\$267
Aug	1,008	6.0	\$139	\$77	\$215				\$215
Sept	957	6.5	\$138	\$67	\$205				\$205
Oct	899	7.0	\$138	\$61	\$199	(estimated)			\$199
Nov	1,660	9.5	\$212	\$118	\$330	947.3	182.6	\$907	\$1,237
Dec	2,120	12.5	\$273	\$195	\$467		474.5	\$1,565	\$2,032
Jan 2014	2,407	12.5	\$293	\$269	\$562		55.0	\$179	\$742
Feb	2,382	13.5	\$303	\$278	\$580		95.2	\$325	\$906
Mar	2,083	12.0	\$268	\$180	\$447		126.0	\$398	\$845
Apr 2014	1,822	8.5	\$214	\$132	\$346		170.0	\$520	\$866
Annual (Units)	19,161		\$2,421	\$1,640	\$4,061	947	1,240	\$4,296	\$8,358
Heating Season (Units)	11,433				\$2,559	947	807	\$2,977	\$5,536
Annual (\$/Unit)			\$0.13	\$0.09	\$0.21			\$3.47	
Heating Season (\$/Unit)					\$0.22			\$3.69	
	Electricity					Waste Oil	Oil	Energy Use	
	kBtu					kBtu	kBtu	Totals (kBtu)	
Annual (kBtu)	65,377					118,413	171,974	355,764	Energy
Heating Season (kBtu)	39,009					118,413	111,973	269,394	Totals
	1			1				Totals (kBtu/sf)	(\$/sf)
Annual (kBtu/sf)	15.2					27.6	40.1	83.0	\$1.95
Heating Season (kBtu/sf)	9.1					27.6	26.1	62.8	\$1.29
Building Name	Fire Station						Heated	Square Footage	4,288

HEAT BALANCE INFORMATION

	BASELINE:		Temperatu	re & Schedule	Information		
	Building Name: Fire Station						
	Total Heating Days	212			Floor SF		
	Outdoor Winter Temperature	35			4,288		
					Htg		
					System		
	Wing name	Occupied	Unoccupi	ied Temp.	0		Occ Leve Heating
	Wing name	Occupied Temp.	Unoccupi Night	ied Temp. Off days	System	Schedule	
1	Wing name Garage Bays +	-	-	-	System Occ. Hrs	Schedule 5 days per week	Heating

В	ASELINE:		HEAT BALA	NCE
GAINS AND I	LOSSES	TING SEASON*	1E6	
CONDUCTIO	N LOSSES	-213.2		
INFILTRATIO	ON LOSSES	-71.4		
VENTILATIO	N LOSSES	0.0		
SOLAR GAIN		16.3		
OCCUPANT (GAIN		0.6	
ELECTRICAL	GAIN		37.1	
NET HEAT	ING DEMA	ND	-230.6	
	Net Heating	/Energy	Seasonal	
	Demand	Required	Efficiency	
	(MMbtu)	(MMbtu)	%	
		290.4	79%	

			CONDU	OTIONI	OCCE		
	BASELINE:		CONDU	CTION L	OSSES		
			HOURS/	DAYS/	TEMP	LOSSES	Sub
#	Zone	UA	DAY	-	DIFF	(* 1E6)	Totals
1	Garage Bays +	1,601	8	151	23	44	
	•	1,601	16	151	23	89	
		1,601	24	61	23	54	187.3
2	Office & Mtng. Room	197	8	151	31	7	
		197	16	151	25	12	
		197	24	61	23	7	25.8
	Total UA	1,797		Con	duction T	otal	213.2
	-	•					

HEAT BALANCE CONTINUED

	BA	SELINE:		INFILTE	RATION	LOSSES			
			0.4						
				HRS/	DAYS/		TEMP	LOSSES	Sub
#	Zone	VOLUME	ACH	DAY	YR	0.018	DIFF	(* 1E6)	Totals
1	Garage Bays +	51,277	0.60	16	151	0.018	23	30.8	
		51,277	0.60	24	61	0.018	23	18.6	
	Occ.	51,277	0.60	8	151	0.018	23	15.4	64.8
2	Office & Mtng. Room	6,974	0.40	16	151	0.018	25	3.0	
		6,974	0.40	24	61	0.018	23	1.7	
	Occ.	6,974	0.40	8	151	0.018	31	1.9	6.6
	•								
						Infi	ltration T	`otal	71.4

HEATING SYSTEM CONTROL MEASURE

	Summary of E	nergy Savings	3		
ECM 1	Heating Syster	n Controls			
	Baseline	After ECM 1	Savings	Reduction	
Net Building Demand (MMBtu/yr)	230.6	223.9	6.71	2.9%	
Marginal System Efficiency	79%	79%			
Fuel Energy Usage (MMBtu/yr)	290.4	281.9			
		•			
Energy Savings	% Reduction	Fuel Use	Gallons Saved	\$/Unit	\$ Saved
#2 Fuel Oil	2.9%	1,240	36	\$3.47	\$125
			Te	otal Savings	\$125
				_	
	Cost	Savings	Payback (yr)		
	\$1,863	\$125	14.9		
-				•	
	% Reduction	Fuel Use	Gallons Saved]	
Waste Oil	2.9%	947	28		
Note: Though	savings of waste oil does	not reduce cost, it redu	ces GHG emissions.		
Payback would be	much shorter if waste oil	were purchased oil.	8.9	Equivalent Payb	ack
Note: Thermostat cost estimates were developed by BEA base	d in part upon figuros from	Sandri Enorgy Groonfield			
memosial cost estimates were developed by BEA base	a in part upon ligules i on s	Sanun Energy, Greenner	<i>ג, ועורי</i> ג.		

Heating System Control Improvement Costs	Heating System Control Improvement Costs						
		Cost (\$)					
Two (2) WiFi Compatible Programmable Thermostat	\$	1,000					
Installation & Setup	\$	540					
Subtotal	\$	1,540					
Contingency	\$	154					
Subtotal	\$	1,694					
Advisory & Contractor Oversight	\$	169					
Measure Total	\$	1,863					

GREENHOUSE GAS INFORMATION

		Greenhous	e Gas (G	HG) Imna	ct		[
	Baseline Fuel Usage	Natural Gas	Oil	Waste Oil	Electricity	MT eCO2		
	Space Heating & Domestic Hot Water		1,240	947		23		
	Measure Description	Fuel Us	age After M	easures		GHG	GHG	Savings
Measure	(RTM = Renewable Thermal Measure)	Natural Gas	Oil	Waste Oil	Electricity	Emmissions	Savings	As % of
#	(ECM = Energy Conservation Measure)	(therm/yr)	(gal / yr)	(gal / yr)	(kWh/yr)	(MT eCO2)	(MT eCO2)	Baseline
ECM 1	Heating System Controls		1,204	920		22	1	3%
						Totals:	1	3%

GHG Emmi	GHG Emmissions						
10.3	MT eCO2 / 1,000	gallons of #2 Fuel Oil					
5.3	MT eCO2 / 1,000	gallons of Propane (LPG)					
10.3	MT eCO2 / 1,000	gallons of Waste Oil					
333.7	333.7 MT eCO2 / 1,000,000 kWh of electricity						
per Clean Air	Cool Planet Campus Carbo	on Calculator (2013 value)					